TCEQ Interoffice Memorandum **To:** Tony Walker Director, TCEQ Region 4, Dallas/Fort Worth Alyssa Taylor Special Assistant to the Regional Director, TCEQ Region 4, Dallas/Fort Worth From: Allison Jenkins, MPH Toxicology Division, Office of the Executive Director **Date:** November 3, 2014 **Subject:** Toxicological Evaluation of Results from an Ambient Air Sample for Volatile Organic Compounds Collected Downwind of XTO Energy, Inc., Veteran & Elkins Gas Well Site (Latitude 32.70427, Longitude -97.15952) in Dalworthington Gardens, Tarrant County, Texas Sample Collected on July 11, 2014, Request Number 1407022 (Lab Sample 1407022-001) ### **Key Points** • Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern. # **Background** On July 11, 2014, a Texas Commission on Environmental Quality (TCEQ) Region 4 air investigator collected a 30-minute canister sample (Lab Sample 1407022-001) downwind of XTO Energy, Inc., Veteran & Elkins Gas Well Site in Dalworthington Gardens, Tarrant County, Texas (Latitude 32.70427, Longitude -97.15952). The sample was collected in response to a hand-held VOC reading. The investigator experienced a moderate to heavy hydrocarbon odor but no health effects while sampling. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 83.3°F with a relative humidity of 61.7%, and winds were from the south southeast (160°) at 2.9-5.6 miles per hour. The sampling site was in a public park and as such, the nearest location where the public could have access was 20 feet from existing wellheads. The sample was sent to the TCEQ laboratory in Austin, Texas, and analyzed for a range of VOCs. The list of the target analytes that were evaluated in this review are provided in Attachment A. The VOC concentrations were reported in parts per billion by volume (ppbv) (Attachment B and Table 1). Please note that the available canister technology and analysis method cannot capture and/or analyze for all chemicals. Tony Walker et al. Page 2 November 3, 2014 #### **Results and Evaluation** Reported VOC concentrations were compared to TCEQ's short-term health- and/or welfare-based air monitoring comparison values (AMCVs) (Table 1). Short-term AMCVs are guidelines used to evaluate ambient concentrations of a chemical in air and to determine its potential to result in adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are set well below levels at which adverse health effects are reported in the scientific literature. If a chemical concentration in ambient air is less than its comparison value, no adverse health effects are expected to occur. If a chemical concentration exceeds its comparison value it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted. All of the 84 VOCs were either not detected or were detected below their respective short-term AMCVs. Exposure to levels of VOCs measured in this sample would not be expected to cause short-term adverse health effects, adverse vegetative effects, or odors. Please call me at (512) 239-0656 if you have any questions regarding this evaluation. Tony Walker et al. Page 3 November 3, 2014 #### Attachment A ### **List of Target Analytes for Canister Samples** ethane ethylene acetylene propane propylene dichlorodifluoromethane methyl chloride isobutane vinyl chloride 1-butene 1,3-butadiene n-butane t-2-butene bromomethane c-2-butene 3-methyl-1-butene 3-methyl-1-butene isopentane trichlorofluoromethane 1-pentene n-pentane isoprene t-2-pentene 1,1-dichloroethylene c-2-pentene methylene chloride 2-methyl-2-butene 2,2-dimethylbutane cyclopentene 4-methyl-1-pentene 1,1-dichloroethane cyclopentane 2,3-dimethylbutane 2-methylpentane 3-methylpentane 2-methyl-1-pentene + 1-hexene n-hexane chloroform t-2-hexene c-2-hexene 1,2-dichloroethane methylcyclopentane 2,4-dimethylpentane 1,1,1-trichloroethane benzene carbon tetrachloride cyclohexane 2-methylhexane 2,3-dimethylpentane 3-methylhexane 1,2-dichloropropane trichloroethylene 2,2,4-trimethylpentane 2-chloropentane n-heptane c-1,3-dichloropropylene methylcyclohexane t-1,3-dichloropropylene 1,1,2-trichloroethane 2,3,4-trimethylpentane toluene 2-methylheptane 3-methylheptane 1,2-dibromoethane n-octane tetrachloroethylene chlorobenzene ethylbenzene m & p-xylene styrene 1,1,2,2-tetrachloroethane o-xylene n-nonane isopropyll isopropylbenzene n-propylbenzene m-ethyltoluene p-ethyltoluene 1,3,5-trimethylbenzene o-ethyltoluene 1,2,4-trimethylbenzene n-decane 1,2,3-trimethylbenzene m-diethylbenzene p-diethylbenzene n-undecane Tony Walker et al. Page 4 November 3, 2014 #### **Attachment B** 8/1/2014 #### Texas Commission on Environmental Quality Laboratory and Quality Assurance Section P.O. Box 13087, MC-165 Austin, Texas 78711-3087 (512) 239-1716 #### Laboratory Analysis Results Request Number: 1407022 | _ | | | |--------------|---------|--| | Request | Ond: | | | IX CHITICS I | LICEUS. | | Region: T04 Date Received: 7/16/2014 Project(s): Barnett Shale | Facility(ies) Sampled | City | County | Facility Type | |--|----------------------|---------|---------------| | XTO Energy Inc., Veteran & Elkins Gas We | Dalworthington Garde | Tarrant | | Sample(s) Received Field ID Number: F2568-071114 Laboratory Sample Number: 1407022-001 Sampled by: Marisa LeCour Sampling Site: Date & Time Sampled: 07/11/14 10:22:00 Valid Sample: Yes Comments: Canister F2568 was used to collect a 30-minute downwind sample using OFC-008. Requested Laboratory Procedure(s): Analysis: AP001VOC Determination of VOC Canisters by GC/MS Using Modified Method TO-15 Please note that this analytical technique is not capable of measuring all compounds which might have adverse health effects. For questions on the analytical procedures please contact the laboratory manager at (512) 239-1716. For an update on the health effects evaluation of these data, please contact the Toxicology Division at (512) 239-1795. Analyst J.P. Loh 11- Laboratory Manager: Javdeen Patel # Laboratory Analysis Results Request Number: 1407022 Analysis Code: AP001VOC | Lab ID | | | 1407 | 022-001 | | | | | | | |-------------------------------|-------|------|-------|------------|---------|--|--|--------------|----------|---------| | Field ID | | | F256 | 8-071114 | | | | | | | | Canister ID | | | | 2568 | | | | | | | | | | | | Analysis | | | | | Analysis | | | Compound | Cone. | SDL | SQL | Date | Flags** | Conc. | SDL | SQL | Date | Flags** | | ethane | 5600 | 34 | 82 | 7/29/2014 | T,D2 | | | | | | | ethylene | 1.9 | 0.73 | 1.7 | 7/25/2014 | T,D1 | | | | ļ ļ | | | acetylene | ND | 0.73 | 1.7 | 7/25/2014 | T,D1 | | | | | | | propane | 250 | 34 | 82 | 7/29/2014 | T,D2 | | | | | | | propylene | ND | 0.73 | 1.7 | 7/25/2014 | T,D1 | | | | | | | dichlorodifluoromethane | 0.57 | 0,29 | 0.87 | 7/25/2014 | L,DI | | | | | | | methyl chloride | 0.77 | 0.29 | 0.87 | 7/25/2014 | L,D1 | | | | | | | isobutane | 7.2 | 0.33 | 1.7 | 7/25/2014 | D1 | | | | | | | vinyl chloride | ND | 0.25 | 0.87 | 7/25/2014 | D1 | | | | | | | 1-butene | ND | 0.29 | 0.87 | 7/25/2014 | D1 | | L | | | | | 1,3-butadiene | 0.07 | 0.39 | 0.87 | 7/25/2014 | J,Dl | | - | : | | | | n-butane | 18 | 0.29 | 1.7 | 7/25/2014 | D1 | | | : | | | | t-2-butenc | ND | 0.26 | 0.87 | 7/25/2014 | D1 | | | | | | | bromomethane | 0.06 | 0.39 | 0.87 | 7/25/2014 | J,D1 | | | | | | | c-2-butene | ND | 0.39 | -0.87 | 7/25/2014- | —D1 | | | | | | | 3-methyl-1-butene | ND | 0.33 | 0.87 | 7/25/2014 | D1 | | | | | | | isopentane | 1,2 | 0.39 | 3.5 | 7/25/2014 | L,D1 | | | | | | | trichlorofluoromethane | 0.25 | 0.42 | 0.87 | 7/25/2014 | J,D1 | | | | | | | 1-pentene | ND | 0.39 | 0.87 | 7/25/2014 | D1 | | | | | | | n-pentane | 0.75 | 0.39 | 3.5 | 7/25/2014 | L,DI | | | | | | | isoprene | 1,1 | 0.39 | 0.87 | 7/25/2014 | D1 | | | Ī | | | | t-2-pentene | ND | 0.39 | 1.7 | 7/25/2014 | D1 | | | | | | | 1,1-dichloroethylene | ND | 0.26 | 0.87 | 7/25/2014 | D1 | | | | | | | c-2-pentene | ND | 0.36 | 1.7 | 7/25/2014 | Di | | | | | | | methylene chloride | 0.04 | 0.20 | 0,87 | 7/25/2014 | J,D1 | i | | | | | | 2-methyl-2-butene | ND | 0.33 | 0.87 | 7/25/2014 | DI | | | | | | | 2,2-dimethylbutane | ND | 0.31 | 0.87 | 7/25/2014 | D1 | | i | | | | | oyclopentene | ND | 0.29 | 0.87 | 7/25/2014 | D1 | | | | | | | 4-methyl-I-pentene | ND | 0.32 | 1.7 | 7/25/2014 | DI | | | | | | | 1,1-dichloroethane | ND | 0.28 | 0,87 | 7/25/2014 | D1 | | | | | | | cyclopentane | ND | 0.39 | 0.87 | 7/25/2014 | DI | 1 | | | | | | 2,3-dimethy/butane | ND | 0.41 | 1.7 | 7/25/2014 | DI | | - | 1 | İ | | | 2-methylpentane | 0.12 | 0.39 | 0.87 | 7/25/2014 | J,D1 | 1 | | i | İ | | | 3-methylpentane | 0.09 | 0.33 | 0.87 | 7/25/2014 | J,D1 | | | | | | | 2-methyl-1-pentene + 1-hexene | ND | 0.29 | 3.5 | 7/25/2014 | DI | - | | 1 | | | | n-hexane | 0,10 | 0.29 | 1.7 | 7/25/2014 | J,D1 | <u> </u> | | | Ì | | | chloroform | ND | 0.31 | 0.87 | 7/25/2014 | DI | | | i | | | | t-2-hexene | ND | 0.39 | 1.7 | 7/25/2014 | D1 | | 1 | i i | | | | c-2-hexene | ND | 0.39 | 1.7 | 7/25/2014 | DI | | 1 | 1 | | | | 1,2-dichloroethane | ND | 0,39 | 0,87 | 7/25/2014 | D1 | | į | T | | | | methyloyolopentane | 0,04 | 0.39 | 1.7 | 7/25/2014 | J,D1 | T | · · | | | | | 2,4-dimethylpentane | ND | 0.39 | 1.7 | 7/25/2014 | DI | | | | | | | 1,1,1-trichloroethane | 0.01 | 0.38 | 0.87 | 7/25/2014 | J,D1 | 1 | | i | | | | benzene | 1.1 | 0.39 | 0.87 | 7/25/2014 | DI | 1 | i | 1 | | | | carbon tetrachloride | 0.11 | 0.39 | 0.87 | 7/25/2014 | J,D1 | | | | <u> </u> | | | cyclobexane | 0.51 | 0.35 | 0.87 | 7/25/2014 | L,D1 | | | | † † | | | 2-methylhexane | ND | 0.39 | 0.87 | 7/25/2014 | D1 | - | | + | | | | 2,3-dimethylpentane | ND | 0.38 | 0.87 | 7/25/2014 | Di | | | + - | + | | ## Laboratory Analysis Results Request Number: 1407022 Analysis Code: AP001VOC | Lab IID | | | 1407 | 022-001 | | | | | | | |---------------------------|-------|------|------|------------------|------------|-------|-----|-----|---------------|---------| | Compound | Conc. | SDL | SQL | Analysis
Date | Flags** | Conc. | SDL | SQL | Analysis Date | Flags+* | | 3-methylhexano | 0.03 | 0.29 | 0.87 | 7/25/2014 | J,D1 | | | | | | | 1,2-dichloropropane | ND | 0.25 | 0.87 | 7/25/2014 | D1 | | | | | | | trichlorcethylene | ND | 0.42 | 0.87 | 7/25/2014 | D1 | | | | | | | 2,2,4-trimethylpentane | 0.02 | 0.35 | 0.87 | 7/25/2014 | J,D1 | | | | | | | 2-chloropentane | ND | 0.39 | 0.87 | 7/25/2014 | D1 | - | | | | | | n-heptane | 0.03 | 0.36 | 1.7 | 7/25/2014 | J,D1 | | | | | | | c-1,3-dichloropropylene | ND | 0.29 | 0.87 | 7/25/2014 | Dl | | | | | | | methyloyclohexane | 0.16 | 0.38 | 1.7 | 7/25/2014 | J,D1 | | | | | | | t-1,3-dichloropropylene | ND | 0.29 | 0.87 | 7/25/2014 | D1 | | | | | | | 1,1,2-trichloroethane | ND | 0,31 | 0.87 | 7/25/2014 | D1 | | | | | | | 2,3,4-trimethylpentane | ND | 0.35 | 1.7 | 7/25/2014 | D1 | | | | | | | toluene | 0.29 | 0.39 | 0.87 | 7/25/2014 | J,D1 | | | | | | | 2-methylheptane | ND | 0.29 | 1.7 | 7/25/2014 | D1 | 1 | | | | | | 3-methylheptane | ND | 0.33 | 1.7 | 7/25/2014 | D1 | | | | | | | 1,2-dibromoethane | ND | 0,29 | 0.87 | 7/25/2014 | D 1 | | | | | | | n-octane | ND | 0.28 | 1.7 | 7/25/2014 | D1 | | | | | | | tetrachloroethylene | 0.01 | 0.35 | 0,87 | 7/25/2014 | J,DI | | | | | | | chlorobenzene | ND | 0.39 | 0.87 | 7/25/2014 | D 1 | | | | | | | ethylbenzene | ND | 0.39 | 1.7 | 7/25/2014 | D1 | | | | | | | rn & p-xylene | 0.08 | 0.39 | 3.5 | 7/25/2014 | J,D1 | | | | | | | styrene | ND | 0.39 | 1.7 | 7/25/2014 | DI | | | | | | | 1,1,2,2-tetrachloroethane | ND | 0.29 | 0.87 | 7/25/2014 | D1 | | | | | | | o-xylene | 0.03 | 0.39 | 1.7 | 7/25/2014 | J,D1 | | | | | | | n-nonanc | ND | 0.32 | 0.87 | 7/25/2014 | D1 | | | | | | | isopropylbenzene | ND | 0.35 | 0.87 | 7/25/2014 | DI | | | | | | | n-propylbonzeno | ND | 0.39 | 0.87 | 7/25/2014 | Di | | | | | | | m-ethyltoluene | ND | 0.16 | 0.87 | 7/25/2014 | DI | | | | | | | p-ethyltoluene | ND | 0.23 | 1.7 | 7/25/2014 | DI | i | | | | | | 1,3,5-trimethy/benzene | ND | 0.36 | 1.7 | 7/25/2014 | DI | | | | | | | o-ethyltoluene | ND | 6.19 | 1.7 | 7/25/2014 | DI | | | | | | | 1,2,4-trimethylbenzene | ND | 0.39 | 0.87 | 7/25/2014 | D1 | | | | | | | n-decane | ND | 0.39 | 1.7 | 7/25/2014 | D1 | | | | | | | 1,2,3-trimefhylbenzene | ND | 0.39 | 0.87 | 7/25/2014 | DI | | | | | | | nı-diethylbenzene | ND | 0.39 | 1.7 | 7/25/2014 | D1 | - | | | | | | p-diethylbenzene | ND | 0.39 | 0.87 | 7/25/2014 | D1 | | | | | | | n-undecane | 0.13 | 0.39 | 1.7 | 7/25/2014 | J.D1 | | | | | | ### Laboratory Analysis Results Request Number: 1407022 Analysis Code: AP001VOC ### Qualifier Notes: - ND not detected NQ concentration can not be quantified due to possible interferences or conlutions. SDL Sample Detection Limit (Limit of Detection adjusted for dilutions). - SQL Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). - INV Invalid. - J Reported concentration is below SDL. - L Reported concentration is at or above the SDL and is below the lower limit of quantitation. - E Reported concentration exceeds the upper limit of instrument calibration. - M Result modified from previous result. - T- Data was not confirmed by a confirmational analysis. Compound and/or results is tentatively identified. - F Established acceptance criteria was not met due to factors outside the laboratory's control. - H Not all associated hold time specifications were met. Data may be biased. - C Sample received with a missing or broken custody seal. - R Sample received with a missing or incomplete chain of custody. - I Sample received without a legible unique identifier. - G Sample received in an improper container. U Sample received with insufficient sample volume. - W Sample recevied with insufficient preservation. Quality control notes for AP001VOC samples, - D1-Sample concentration was calculated using a dilution factor of 2,9054. - D2-Sample concentration was calculated using a dilution factor of 137.09. Table 1. Comparison of Monitored Concentrations in Lab Sample 1407022-001 to TCEQ Short-Term AMCVs | Lab Sample ID | 1407022-001 | | | | | | |-----------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 1,1,1-Trichloroethane | 380,000 | 1,700 | 0.87 | 0.01 | J,D1 | 0.38 | | 1,1,2,2-Tetrachloroethane | 7,300 | 10 | 0.87 | ND | D1 | 0.29 | | 1,1,2-Trichloroethane | Not Available | 100 | 0.87 | ND | D1 | 0.31 | | 1,1-Dichloroethane | Not Available | 1,000 | 0.87 | ND | D1 | 0.28 | | 1,1-Dichloroethylene | Not Available | 180 | 0.87 | ND | D1 | 0.26 | | 1,2,3-Trimethylbenzene | Not Available | 250 | 0.87 | ND | D1 | 0.39 | | 1,2,4-Trimethylbenzene | 140 | 250 | 0.87 | ND | D1 | 0.39 | | 1,2-Dibromoethane | Not Available | 0.5 | 0.87 | ND | D1 | 0.29 | | 1,2-Dichloroethane | 6,000 | 40 | 0.87 | ND | D1 | 0.39 | | 1,2-Dichloropropane | 250 | 100 | 0.87 | ND | D1 | 0.25 | | 1,3,5-Trimethylbenzene | Not Available | 250 | 1.7 | ND | D1 | 0.36 | | 1,3-Butadiene | 230 | 1,700 | 0.87 | 0.07 | J,D1 | 0.39 | | 1-Butene | 360 | 27,000 | 0.87 | ND | D1 | 0.29 | | 1-Pentene | 100 | 2,600 | 0.87 | ND | D1 | 0.39 | | 2,2,4-Trimethylpentane | 670 | 750 | 0.87 | 0.02 | J,D1 | 0.35 | | 2,2-Dimethylbutane (Neohexane) | Not Available | 1,000 | 0.87 | ND | D1 | 0.31 | | 2,3,4-Trimethylpentane | Not Available | 750 | 1.7 | ND | D1 | 0.35 | | 2,3-Dimethylbutane | 420 | 990 | 1.7 | ND | D1 | 0.41 | | 2,3-Dimethylpentane | 4,500 | 850 | 0.87 | ND | D1 | 0.38 | | 2,4-Dimethylpentane | 940 | 850 | 1.7 | ND | D1 | 0.39 | | 2-Chloropentane (as chloroethane) | Not Available | 240 | 0.87 | ND | D1 | 0.39 | | 2-Methyl-1-Pentene +1-Hexene | 140 | 500 | 3.5 | ND | D1 | 0.29 | | 2-Methyl-2-Butene | Not Available | 2,600 | 0.87 | ND | D1 | 0.33 | | 2-Methylheptane | 110 | 750 | 1.7 | ND | D1 | 0.29 | Tony Walker et al. Page 9 November 3, 2014 | Lab Sample ID | 1407022-001 | | | | | | |---------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 2-Methylhexane | 420 | 750 | 0.87 | ND | D1 | 0.39 | | 2-Methylpentane (Isohexane) | 7,000 | 850 | 0.87 | 0.12 | J,D1 | 0.39 | | 3-Methyl-1-Butene | 250 | 8,000 | 0.87 | ND | D1 | 0.33 | | 3-Methylheptane | 1,500 | 750 | 1.7 | ND | D1 | 0.33 | | 3-Methylhexane | 840 | 750 | 0.87 | 0.03 | J,D1 | 0.29 | | 3-Methylpentane | 8,900 | 1,000 | 0.87 | 0.09 | J,D1 | 0.33 | | 4-Methyl-1-Pentene (as hexene) | 140 | 500 | 1.7 | ND | D1 | 0.32 | | Acetylene | Not Available | 25,000 | 1.7 | ND | T,D1 | 0.73 | | Benzene | 2,700 | 180 | 0.87 | 1.1 | D1 | 0.39 | | Bromomethane (methyl bromide) | Not Available | 30 | 0.87 | 0.06 | J,D1 | 0.39 | | c-1,3-Dichloropropylene | Not Available | 10 | 0.87 | ND | D1 | 0.29 | | c-2-Butene | 2,100 | 15,000 | 0.87 | ND | D1 | 0.39 | | c-2-Hexene | 140 | 500 | 1.7 | ND | D1 | 0.39 | | c-2-Pentene | Not Available | 2,600 | 1.7 | ND | D1 | 0.36 | | Carbon Tetrachloride | 4,600 | 20 | 0.87 | 0.11 | J,D1 | 0.39 | | Chlorobenzene (phenyl chloride) | 1,300 | 100 | 0.87 | ND | D1 | 0.39 | | Chloroform (trichloromethane) | 3,800 | 20 | 0.87 | ND | D1 | 0.31 | | Cyclohexane | 2,500 | 1,000 | 0.87 | 0.51 | L,D1 | 0.35 | | Cyclopentane | Not Available | 1,200 | 0.87 | ND | D1 | 0.39 | | Cyclopentene | Not Available | 2,900 | 0.87 | ND | D1 | 0.29 | | Dichlorodifluoromethane | Not Available | 10,000 | 0.87 | 0.57 | L,D1 | 0.29 | | Ethane | Not Available | Simple Asphyxiant* | 82 | 5600 | T,D2 | 34 | | Ethylbenzene | 170 | 20,000 | 1.7 | ND | D1 | 0.39 | | Ethylene | 270,000 | 500,000 | 1.7 | 1.9 | T,D1 | 0.73 | | Isobutane | Not Available | 33,000 | 1.7 | 7.2 | D1 | 0.33 | | Isopentane (2-methylbutane) | 1,300 | 68,000 | 3.5 | 1.2 | L,D1 | 0.39 | | Lab Sample ID | 1407022-001 | | | | | | |--------------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | Isoprene | 48 | 20 | 0.87 | 1.1 | D1 | 0.39 | | Isopropylbenzene (cumene) | 48 | 500 | 0.87 | ND | D1 | 0.35 | | m & p-Xylene (as mixed isomers) | 80 | 1,700 | 3.5 | 0.08 | J,D1 | 0.39 | | m-Diethylbenzene | 70 | 460 | 1.7 | ND | D1 | 0.39 | | Methyl Chloride (chloromethane) | Not Available | 500 | 0.87 | 0.77 | L,D1 | 0.29 | | Methylcyclohexane | 150 | 4,000 | 1.7 | 0.16 | J,D1 | 0.38 | | Methylcyclopentane | 1,700 | 750 | 1.7 | 0.04 | J,D1 | 0.39 | | Methylene Chloride (dichloromethane) | 160,000 | 3,500 | 0.87 | 0.04 | J,D1 | 0.2 | | m-Ethyltoluene | 18 | 250 | 0.87 | ND | D1 | 0.16 | | n-Butane | 1,200,000 | 92,000 | 1.7 | 18 | D1 | 0.29 | | n-Decane | 620 | 1,750 | 1.7 | ND | D1 | 0.39 | | n-Heptane | 670 | 850 | 1.7 | 0.03 | J,D1 | 0.36 | | n-Hexane | 1,500 | 1,800 | 1.7 | 0.1 | J,D1 | 0.29 | | n-Nonane | Not Available | 2,000 | 0.87 | ND | D1 | 0.32 | | n-Octane | 1,700 | 750 | 1.7 | ND | D1 | 0.28 | | n-Pentane | 1,400 | 68,000 | 3.5 | 0.75 | L,D1 | 0.39 | | n-Propylbenzene | 48 | 500 | 0.87 | ND | D1 | 0.39 | | n-Undecane | 870 | 550 | 1.7 | 0.13 | J,D1 | 0.39 | | o-Ethyltoluene | 74 | 250 | 1.7 | ND | D1 | 0.19 | | o-Xylene | 380 | 1,700 | 1.7 | 0.03 | J,D1 | 0.39 | | p-Diethylbenzene | 70 | 460 | 0.87 | ND | D1 | 0.39 | | p-Ethyltoluene | 8.1 | 250 | 1.7 | ND | D1 | 0.23 | | Propane | 1,500,000 | Simple Asphyxiant* | 82 | 250 | T,D2 | 34 | | Propylene | 13,000 | Simple Asphyxiant* | 1.7 | ND | T,D1 | 0.73 | | Styrene | 25 | 5,100 | 1.7 | ND | D1 | 0.39 | | t-1,3-Dichloropropylene | Not Available | 10 | 0.87 | ND | D1 | 0.29 | Tony Walker et al. Page 11 November 3, 2014 | Lab Sample ID | 1407022-001 | | | | | | |------------------------|----------------------------------|--|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | t-2-Butene | 2,100 | 15,000 | 0.87 | ND | D1 | 0.26 | | t-2-Hexene | 140 | 500 | 1.7 | ND | D1 | 0.39 | | t-2-Pentene | Not Available | 2,600 | 1.7 | ND | D1 | 0.39 | | Tetrachloroethylene | 770 | 1,000 | 0.87 | 0.01 | J,D1 | 0.35 | | Toluene | 920 | 4,000 | 0.87 | 0.29 | J,D1 | 0.39 | | Trichloroethylene | 3,900 | 100 | 0.87 | ND | D1 | 0.42 | | Trichlorofluoromethane | 5,000 | 10,000 | 0.87 | 0.25 | J,D1 | 0.42 | | Vinyl Chloride | Not Available | 26,000 | 0.87 | ND | D1 | 0.25 | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ppbv - Parts per billion by volume. ND - Not detected. NQ - Concentration can not be quantified due to possible interferences or coelutions. SDL - Sample Detection Limit (Limit of Detection adjusted for dilution). SQL – Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). INV - Invalid. - J Reported concentration is below SDL. - L Reported concentration is at or above the SDL and is below the lower limit of quantitation. - E Reported concentration exceeds the upper limit of instrument calibration. - M Result modified from previous result. - T Data was not confirmed by a confirmational analysis. Data is tentatively identified. - F Established acceptance criteria were not met due to factors outside the laboratory's control. - H Not all associated hold time specifications were met. Data may be biased. - C Sample received with a missing or broken custody seal. - R Sample received with a missing or incomplete chain of custody. - I Sample received without a legible unique identifier. - G Sample received in an improper container. - U Sample received with insufficient sample volume. Tony Walker et al. Page 12 November 3, 2014 - W Sample received with insufficient preservation. - D1 Sample concentration was calculated using a dilution factor of 2.9054. - D2 Sample concentration was calculated using a dilution factor of 137.09. Tony Walker et al. Page 13 November 3, 2014 **Table 2. TCEQ Long-Term Air Monitoring Comparison Values (AMCVs)** Please Note: The long-term AMCVs are provided for informational purposes only because it is scientifically inappropriate to compare short-term monitored values to the long-term AMCV. | Compound | Long-Term Health AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |-----------------------------------|---|--------------------------------------|--| | 1,1,1-Trichloroethane | 940 | Cyclopentane | 120 | | 1,1,2,2-Tetrachloroethane | 1 | Cyclopentene | 290 | | 1,1,2-Trichloroethane | 10 | Dichlorodifluoromethane | 1,000 | | 1,1-Dichloroethane | 100 | Ethane | Simple Asphyxiant* | | 1,1-Dichloroethylene | 86 | Ethylbenzene | 450 | | 1,2,3-Trimethylbenzene | 25 | Ethylene** | 5,300 | | 1,2,4-Trimethylbenzene | 25 | Isobutane | 2,400 | | 1,2-Dibromoethane | 0.05 | Isopentane (2-methylbutane) | 8,000 | | 1,2-Dichloroethane | 1 | Isoprene | 2 | | 1,2-Dichloropropane | 10 | Isopropylbenzene (cumene) | 50 | | 1,3,5-Trimethylbenzene | 25 | m & p-Xylene (as mixed isomers) | 140 | | 1,3-Butadiene | 9.1 | m-Diethylbenzene | 46 | | 1-Butene | 2,300 | Methyl Chloride (chloromethane) | 50 | | 1-Pentene | Not Available | Methylcyclohexane | 400 | | 2,2,4-Trimethylpentane | 75 | Methylcyclopentane | 75 | | 2,2-Dimethylbutane (Neohexane) | 100 | Methylene Chloride (dichloromethane) | 100 | | 2,3,4-Trimethylpentane | 75 | m-Ethyltoluene | 25 | | 2,3-Dimethylbutane | 99 | n-Butane | 2,400 | | 2,3-Dimethylpentane | 85 | n-Decane | 175 | | 2,4-Dimethylpentane | 85 | n-Heptane | 85 | | 2-Chloropentane (as chloroethane) | 24 | n-Hexane | 190 | | 2-Methyl-1-Pentene +1-Hexene | 50 | n-Nonane | 200 | Tony Walker et al. Page 14 November 3, 2014 | Compound | Long-Term Health AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |---------------------------------|---|-------------------------|--| | 2-Methyl-2-Butene | Not Available | n-Octane | 75 | | 2-Methylheptane | 75 | n-Pentane | 8,000 | | 2-Methylhexane | 75 | n-Propylbenzene | 50 | | 2-Methylpentane (Isohexane) | 85 | n-Undecane | 55 | | 3-Methyl-1-Butene | 800 | o-Ethyltoluene | 25 | | 3-Methylheptane | 75 | o-Xylene | 140 | | 3-Methylhexane | 75 | p-Diethylbenzene | 46 | | 3-Methylpentane | 100 | p-Ethyltoluene | 25 | | 4-Methyl-1-Pentene (as hexene) | 50 | Propane | Simple Asphyxiant* | | Acetylene | 2,500 | Propylene | Simple Asphyxiant* | | Benzene | 1.4 | Styrene | 110 | | Bromomethane (methyl bromide) | 3 | t-1,3-Dichloropropylene | 1 | | c-1,3-Dichloropropylene | 1 | t-2-Butene | 690 | | c-2-Butene | 690 | t-2-Hexene | 50 | | c-2-Hexene | 50 | t-2-Pentene | Not Available | | c-2-Pentene | Not Available | Tetrachloroethylene*** | 3.8 | | Carbon Tetrachloride | 2 | Toluene | 1,100 | | Chlorobenzene (phenyl chloride) | 10 | Trichloroethylene | 10 | | Chloroform (trichloromethane) | 2 | Trichlorofluoromethane | 1,000 | | Cyclohexane | 100 | Vinyl Chloride | 0.45 | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ^{**}Long-term vegetation AMCV for Ethylene is 30 ppb. ^{***}Long-term vegetation AMCV for Tetrachloroethylene is 12 ppb.